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The problem of the orbital stability of periodic motions of a Hamiltonian system with two degrees of freedom is considered. 
The Hamilton function does not depend explicitly on the time and is analytic in the neighbourhood of the trajectory of the 
unperturbed motion. The critical case, when all the multipliers are real and have moduh equal to unity, is investigated. The stability 
and instability conditions are obtained using Lyapunov’s second method and the RAM theory. Constructive algorithms for checking 
these conditions are given. The case of a system containing a small parameter is considered in particular. On the technical side, 
the investigation rests primarily on the classical theory of perturbations of Hamiltonian systems and its modem modifications. 
The problem of the stability of the permanent rotation of a heavy circular disc which is in collision with a fixed horizontal plane 
and the problem of the stability of the plane rotations of a rigid body about a tixed point are considered as applications. 0 2001 
Elsevier Science Ltd. AU rights reserved. 

1. THE HAMILTON FUNCTION AND ITS NORMAL FORM 

Suppose an autonomous Hamiltonian system with two degrees of freedoms has a periodic motion and 
in a neighbourhood of a closed trajectory of phase space corresponding to this motion the Hamilton 
function is analytic. We will assume, without loss of generality, that the period is equal to 21r. 

The canonically conjugate variables &, qi (& are the coordinates and qi are the momenta, i = 1,2) 
can be chosen [l] such that the solution corresponding to the periodic motion considered can be written 
in the form 

5,(‘)=‘+5,(0)* rll =52 =q* =o (1.1) 

Here the Hamiltonian P will be 2n-periodic in 5. It can be expanded in a converging series in powers 
of q1,52,112: 

r=r2+r3+r4+...+rk+... (1.2) 

where rk is the form of the power of k relative to 1 ql I*‘, 52, q2. We will write the forms of the second, 
third and fourth power, required later, in the form 

(1.3) 

where &) is a 2a-periodic function of & and (pm, JI, are forms of power m in 52, q2 with coefficients 
that are 2rr-periodic in E_i. 

The orbital stability of the unperturbed motion (1.1) denotes stability of the system with Hamiltonian 
(1.2) with respect to perturbations of the quantities ql, 52,q2. 

lko of the multipliers of the system of equations of the unperturbed motion, linearized in the neigh- 
bourhood of periodic motion (l.l), are equal to unity, and the other two are the roots of the equation 

p2-2Ap+l=O (1.4) 

where 24 = xrr(21r) + x~~(~IT) andxti(2w) are the elements of the matrix X(&), calculated for 51 = HIT, 
of the fundamental solutions (X(0)) = E, where E is the second-order identity matrix) of the linear 
system with coefficients that are 2a-periodic with respect to the independent variable 51 
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dc2 acp2 a2 -=- h2 
d5, 3%’ ds,=-as2 (1.5) 

Here cp2 is the part of the function I2 from (1.3) that is quadratic in 62, q2. 
We will investigate the critical case when (A 1 = 1, i.e. when Eq. (1.4) has real roots (whenA = -1) or 
roots p1 = p2 = 1 (whenA = 1). Confining ourselves to the case of the general situation, we will assume 
that the matrix X (27r) does not reduce to diagonal form. In this case, the unperturbed periodic motion 
is orbitally unstable in the linear approximation. 

Tb investigate the non-linear problem of the orbital stability of periodic motion (1.1) it is best to obtain 
the normal form of the Hamilton function (1.2) using a canonical replacement of variables. To do this 
we will first use a real linear univalent canonical replacement of variables, periodic in t1 

52 = “l&,b2 +n,2(5,)~2 9 rl2 = n21Gh42 +nzzW~z (1.6) 

to reduce the quadratic Hamiltonian q2 of Eqs (1.5) to its normal form l/2 I$, where 6 = 1 or -1, its 
specific value being determined when constructing replacement (1.6). 

IfA = 1, we can obtain a matric N of the replacement of variables (1.6) that is 2rr-periodic in el. It 
has the form [2] 

where 

N = X(5, N’QG., 1 (1.7) 

’ -%I 
Q=o I I I (l-8) 

and the number 6 and the matrix P are defined by the following formulae: if x12(2w) f 0, we have 

a 0 
P= R A b a-’ ’ 

6 = sign x,~(~A) (1.9 

a = 1 x,2(2x)l(2n) lK, b = &x22(211)_ I) I21uc,,(27c) lSx 

and if x21(21r) # 0, we have 

P= . 6 = -sign x2I (2rc) 

c = 1 x2, (2x)/(2x) 1%. d = 6(x,, (211) - I) 1 2%x2, (2~) I+ (1.10) 

WhenA = - 1 replacement (1.6) will be 4n-periodic in E1. It can be obtained in the form of the product 
of three matrices (1.7), where Q is given by formula (1.8) and P is defined by Eqs (1.9) or (IlO), in 
which a and c remain as before, while 

where 6 = -sign x12(212) ifx12(2~) # 0 and S = sign ~~~(21r) if x21(2T) f 0. 
If S(u2, 52, 51) is the generating function of transformation (1.6), then, by the theory of canonical 

transformations [3], we have the identity 

(1.11) 

On the left-hand side of this identity the quantities (2, q2 are expressed in terms of u2 and 2)~ by formulae 
(1.6). 

‘Ib obtain the transformation tl, e2, ql, q2 + ul, ~2, ul, u2, canonical with respect to all the variables 
and which reduces the function I’2 from (1.2) to normal form, we take a generating function of the form 
u& + S. Then u1 = !&, and 
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(1.12) 

where ki. are periodic functions of &, found from identity (1.11). 
The kunilton function (1.2) can be written as follows in the new variables Ui, Vi 

F=F,+F,+F,...+F,+... (1.13) 

F2 =u, +H&$, 4 =fr(+rU2.,4)U, +&i(,w$~,) (1.14) 

E, = x(u, )u: +fr(,++r~,)u, +fq(++.u,) 

Herefk is a form of the power k in u2, v2 

L4 = “+s jJ~IN~2” 
I 

The coefficients f,, have period r in u,. The value of 7 is equal to 27~ when A = 1 in Eq. (1.4) and 
7 = 41, whenA = - 1. Expressions forf,, in terms of the coefficients of Hamiltonian (1.2) follow from 
the identities +,q, + ‘p3 = F3, xql + &r), + ‘p4 = F4, on the left-hand sides of which 52, qr and ql are 
replaced, in accordance with formulae (1.6) and (1.12), while 5, = ul. 

To normalize terms of the third and higher powers in Hamilton function (1.3) we will use the Depri- 
Hori method [4,5]. We will confine ourselves to considering terms up to the fourth power inclusive. In 
a sufficiently small neighbourhood of the unperturbed periodic motion, the normalizing canonical 
transformation ul, ul, u2, u2, + wl, rl, q2, ~2, can be obtained close to the identity transformation 

UI =w,+ . . . . u,=q+ . . . . u2=q2+ . . . . fJz=pz+... 

where the dots converging series in powers of rl, q2 and p2 with coefficients T-periodic in wl. The 
normalized Hamiltonian (1.13) takes the form 

H=r,+)/26p;+hh30q;+h,,,q2rj+h40q;+h20q;tj+h,,gi2+05 (1.15) 

where h, are constant quantities while 0s is a series which begins with terms no less than the Cfth power 
in ]r, 1 1R, q2,p2, and the coefficients of the series r are T-periodic in the variable w,. Orbital stability of 
the unperturbed periodic motion (1.1) is equivalent to stability of a system with normalized Hamiltonian 
(1.15) with respect to perturbations of the quantities r,, q2 andpz. 

Omitting the fairly lengthy calculations, we will write the final formulae required to calculate coef- 
ficients hii of the normal form. We have 

hso = (f,o), h,o = V,o> (1.16) 

k,,, = 
( 
fa -.&&o +%(f&%, -~,~~0))+wsC3(r,xfi~)-(fi1)~) (1.17) 

h2O=(f20-jZO+K(h~o, -k%o)+M~o~2it,, -h&o)+ 

+j/2~((fio)(fi2)-2(fil)(fol)) (1.18) 

ho0 =(x+MXofio, -ib,~,o))-~~(foJ2 (1.19) 

Here we have used the notation u1 for the coefficients f& of forms (1.14), T-periodic in ~1, where 
fvIL = (f&) + fvP, is the mean value of the function (f”,,) over the period. Similar notation is also used 
for the coefficients wVP of the expansion in series of the generating function of the Lie transformation 
in the Depri-Hori method. The functions G,,, occurring in (1.17)-(1.19) satisfy the following system 
of differential equations 

d%o - = j&, !$, = j2, -3&G,, 
du, I 
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dwlo 9 = fo, - 6G,, 
du, 

- x0, 
I 

The initial values of the functions G,+ can obviously be chosen so that the mean values (G”,,) are equal 
to zero. 

2. THE INSTABILITY OF THE PERIODIC MOTION 

In this section we will prove the following assertion. 

Theorem 1. If the coefficient hsO of normal form (1.15) is non-zero or ha = 0 but 8.& < 0, the periodic 
motion is orbitally unstable. 

In order to prove the correctness of the theorem, it is sufficient to demonstrate the instability for 
values of the perturbations rl, q2 andp2, belonging to the energy level H = 0, on which the perturbed 
motion (1.1) lies. On this energy level the motion of the system is described by Whittaker’s equations, 
which have the form of the Hamilton equations [3]. The function K(q2,p2, wi), where rl = -K is the 
root of the equation H = 0, plays the role of the Hamilton function, while the quantity wi plays the 
role of the independent variable. In a sufficiently small neighbourhood of the unperturbed motion (1.1) 
the quantity w1 increases monotonically and can play the role of time in the stability problem. 

Suppose hsO is non-zero in (1.15). Solving the equation H = 0 for rl, we obtain 

K = % 6~; ‘+ h,od - K ah,oqzp; + 0, (2.1) 

where 0, is the set of terms higher than the third power in q2 andp2. 
We will use Lyapunov’s theorem on instability [6]. We will first simplify Hamiltonian (2.1) by making 

two canonical replacements of variables in succession. The first replacement q2,p2 + qi,pi is univalent 
and is specified by the generating function 

4 = & + %h,odp; 

while the second has valency ZV& and has the form 

q; = iSh$Q,, p; = h;blpZ 

After these replacements the motion on the energy level H = 0 is described by the transformed 
Hamiltonian (2.1), which has the form 

K=MP;1+Q;+04 P-2) 

We take the following function as the Lyapunov function 

v=(Q2 --WY5 

By virtue of the equations of motion with Hamiltonian (2.2) its derivative will be 

Since the derivative is positive-definite, while the function Vitself is sign-variable, then, by Lyapunov’s 
theorem, there is instability 

Suppose now hsO = 0 and 8/zdo < 0. We will show that there is instability, as above, by using Lyapunov’s 
theorem. The motion on the energy level H = 0 is described by equations to which the following 
Hamiltonian corresponds 

K=M6~~-~~h,oq2p~+h~q~--~6h2oq~p~+~/4~~+0~ (2.3) 

After the canonical univalent replacement of variables q2, p2 + qi, pi, defined by the generating 
function 
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S, = q2p; + %h,odp; + 1124(3h& + 4&,,& -%%m&3 
and a subsequent canonical replacement (with valency S 1 hdO I) 

q; = 6 I ha I+ Q2, P; = I ha I+ 4 

Hamiltonian (2.3) takes the form 

K=xP;--Q;+05 

Suppose V = QzpZ. Then, by virtue of equations corresponding to (2.4), we obtain 

(2.4) 

dV -=4Q;+P;+Os 
dw 

Since Vis sign-variable, while dV,,dwl is positive-definite function, then, by Lyapunov’ theorem, there 
is instability. 

Theorem 1 is proved. 

3. THE CONDITION FOR ORBITAL STABILITY 
OF PERIODIC MOTION 

The following theorem, which gives the sufficient condition for the orbital stability of unperturbed 
motion, holds. 

Theorem 2. If the coefficient h30 in normal form (1.15) is equal to zero, but then ShM > 0, periodic 
motion (1.1) is orbitally stable. 

We will prove this theorem by the methods of the KAM theory [7]. We will carry out the proof in 
several stages. 

3.1. The introduction of a smallparameter. Using the smallness of the quantities rl, q2 andpa we will 
introduce a small parameter ~(0 < E 4 1) and we will slightly transform Hamiltonian (1.15) using the 
following canonical replacement of variables (with valency E% ]hm I) 

u, =u,. ‘I = & 1 hN I-’ R, 

q2=&81h‘,JKQ;, p2=Elh,+?, ’ 

(3-I) 

In the new variables the perturbed motion has a Hamilton function of the form 

H=R,+E~~(Q~.~~.R,)+~~,(Q~,~~,R,.u,.E~) 

where 

(3.2) 

@=j$Pi+Q;+aQ2R, (a=6h,,)h,,,,IsH) (3.3) 

while the function @i is analytic with respect to all its arguments and i r-periodic in ui. 

3.2. The approximate system. Ifwe drop the term &a1 in (3.2), we obtain an approximate system having 
the Hamiltonian 

Ha = R, +E K @(Q2r&R,) (34 

In the approximate system the quantity RI is constant and the change of the variables Q2 and P2 with 
time is described by canonical equations with Hamilton function 

‘l’ = a%(Q2, P2, R,) (3.5) 
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where RI is a constant parameter. These equations have the integral 

@(Q2.PZ,R,)=h=const (3.6) 

For actual motion h 3 ho -(27/256)‘“(~xZ?i)~“. When h = ho we have stable equilibrium for which 
P2 = 0 and Qz = ~(1/4 1 aR1 I)‘“, where the upper sip corresponds to the case oZ?r 3 0 and the lower 
sign corresponds tb the case c&r G 0. When h > h oscillations occur in the neighbourhood of this 
equilibrium position. 

Phase portraits of the system with Hamiltonian (3.5) are shown in Fig. 1, Figures l(a), (b) and (c) 
correspond to the cases c&i > 0, &?r = 0 and oZZ1 < 0, respectively. 

The point Qz = Pz = 0 lies inside the region enveloped by phase curve (3.6) if h > 0 on this curve. 
The origin of coordinates Q2 = P2 = 0 itself corresponds to the case h = 0 in Fig. l(b). In Fig. l(a) 
and (c) the phase curves corresponding to the case h = 0 are represented by dashes. On these curves 

(3.7) 

3.3. Action-angle variables in the approximate system. In order to use the results of the KAM theory 
to prove Theorem 2, it is now convenient to introduce the variables 1i and rvi (i = 1,2) into the system 
with Hamiltonian (3.2). These variables are action-angle variables [8] in the approximate system with 
Hamilton function (3.4). Hamilton function (3.2) can be written in the following form in the 4, Wi variables 

H = ~‘“‘(I,)+e~H”‘(f,.I,)+~H’*‘(1,,I,,w,.W2;L~) (3.8) 

where H@ is a 2a-periodic function in the angle variables w1 and ~2. 
If a = 0 (in this case there are no terms of the third power in Irl 1 m, q2, p2 in (1.15)), we can 

obtain the replacement of variables Ur, RI, Q2, P2 + wl, Zt, w2, Z2, in explicit form 

U, =w,,R, =I, 

Q2 =-VKcn@,k), p2 =2Vxsn(v,k)dn(v,k) 

o = 2Kw2 /K, V = 3711,/(4K) 

(3.9 

Here sn, cn and dn are the elliptic Jacobi functions, K is the complete elliptic integral of the first kind 
and the modulus k of the elliptic functions and of the integral is equal to 2- ‘2. 

Replacement (3.9) is canonical, univalent and 27r-periodic in w2. We obtain that in Hamiltonian (3.8) 

/j’O’ = I,, H”‘=(Knl,K-‘)% (3.10) 

while the function iY(*) when 1, > 0 is analytic with respect to all its arguments. 
Suppose now that a f 0. We will limit ourselves solely to obtaining action variables Ii and 12 Since, 

in the approximate system Ut is a cyclical coordinate, we have Ii = RI. If I1 = 0, the variable I2 is 
introduced, as in the case when a = 0, by the formulae from (3.9). Suppose Ii # 0 and, to fix our ideas 
olli > 0 (the case when d1 c 0 can be considered in a similar way). We then have 

12 = +- fsde, 
(3.11) 

(a) (b) 

Fig. 1 
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where the integral is evaluated along the closed phase trajectory in Fig, la, specified by Eqs (3.3) and 
(3.6), in which Rr = Z,. 

If we make the replacement Qz = (c~Z~)“~x, in (3.11), we obtain 

/* &al, x2 =--+Jxa 
XI 

(3.12) 

f =t-x-x4, r=(uZ,)-%i (r> -(27/256)&) (3.13) 

The quantities x1, nz(xr d -2-2” Q xz) are the real roots of the equationf = 0. The other two roots 
of this equation are complex-conjugate umbers. 

The derivative with respect to z of the right-hand side of (3.12) is non-zero. Hence, it can be solved 
for z. We obtain that z will be a certain function of the ratio ZdZt. We then obtain from (3.13) that h = 
(cxZ~)~‘~J (ZdZI). Consequently, in the Hamilton function (3.8) we have 

Zf’O’ = I,, H”’ = (a&& / I,) 

while the function Z!Z@l is analytic with respect to its arguments when Zr f 0, 12 > 0. 

(3.14) 

3.4. The change in the variables Zi (i = 1, 2) in the complete system and the orbital stability of the 
unperturbed periodic motion. In the approximate system, described by Hamiltonian (3.4) the action 
variables are constant, Zi(t) = Zj(0) (i = 1, 2). In the complete system, with Hamiltonian (3.2), the 
quantities Zj, generally speaking, will not be constant. But if the Hamiltonian of the complete system, 
written in the variables 4, wi in the form (3.8), satisfies the conditions 

(3.15) 

then, by the KAM theory [7], for sufficiently small E (i.e., by virtue of (3.1), in a sufficiently small 
neighbourhood of the trajectory of the unperturbed motion) for all initial conditions the variables Z,(t) 
for all t > 0 will differ only slightly from their initial values 

1 /j(t)-fi(0)(c~~~(c-const), i=1,2 (3.16) 

Consider the case when cJ1 = 0. It immediately follows from expressions (3.10) for H(O) and H(l) 
that when 12 > 0 conditions (3.15) are satisfied. Hence, for all t > 0 inequalities (3.16) hold. Hence, by 
virtue of the replacements (3.1) and (3.9) it follows that the periodic motion (1.1) is orbitally stable. 

Suppose now that o.Zr # 0. The first of conditions (3.15) is obviously satisfied, according to (3.14). 
For the derivatives of the function Z#‘l with respect to Z2, using [9] we obtain the following expression 
from (3.14) and (3.12) 

p=[(x, +X*)*+2X;]~, q=[(x, +x*)2 +2x:1x 

The modulus k of the complete elliptic integral of the first kind K(k) is found from the equation 

4pqk* = (x, -x2)* - @ - q)* 

Note that the quantity aZY%Zz is equal to the oscillation frequency corresponding to the closed 
trajectory in Fig. l(a), divided by #. This quantity is p ositive and, consequently, the second of conditions 
(3.15) is satisfied for all z > -(27/256)“, i.e. for all closed trajectories in Fig. l(a). 

A check on the third of conditions (3.15) is more complicated. However, for the problem of the stability 
of periodic motion (1.1) it is sufficient to verify that this condition is satisfied at least for small positive 
values of z, to which the phase trajectories (3.6) surrounding the origin of coordinates Qz = P2 = 0 
correspond. 
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Calculations show that for small z the following estimate holds 

~=(y+O(z))(al,)-g, y= n2&[& + 1)K - 2J-3El 

2 3K3 
(3.17) 

where the modulus of the complete elliptic integrals K ad E is specified by the equality 4k = 2 - ~‘3. 
Since y = -1.372, it follows from (3.17) that the third of inequalities (3.15) holds for sufficiently small 
z. Hence, for the set of all initial conditions which correspond to the trajectories surrounding the point 
Q2 = Pz = 0, lying close to the dashed trajectories (3.6) shown in Fig. l(a), when h = 0, the variables 
I&) (i = 1, 2) for all t > 0 satisfy inequalities (3.16), provided E is sufficiently small. Hence, taking 
inequalities (3.7) and the replacement (3.1) into account, it follows that Theorem 2 also holds in the 
case when oIr ;r: 0. 

4. THE STABILITY OF THE PERIODIC MOTION OF A DISC WHEN IT 
IS IN COLLISION WITH A HORIZONTAL PLANE 

Suppose a thin uniform circular disc of radius R moves above a fixed absolutely smooth horizontal plane 
in a uniform gravitational field. From time to time the disc collides with the plane. The collisions are 
assumed to be absolutely elastic. 

A motion of the disc exists when it rotates with constant angular velocity o around its diameter, which 
occupies a vertical position, and then, as a result of the collisions, the disc periodically jumps Q height 
h above the plane. 

The orbital stability of this periodic motion of the disc (i.e. the stability with respect to perturbations 
of the angle of deviation of the plane of the disc from the vertical, the derivative of this angle with respect 
to time and the height the disc jumps above the plane) were investi 
the plane of the dimensionless parameters a = WV’%& b = ! 

ated in [lo]. It turned out that in 
4g/(w R) there is a denumerable set of 

regions of stability and instability. In Fig. 2 we show part of the a, b plane containing the first two regions 
of instability, shown hatched in the figure. The values of the parameters a and b which lie on the curves 
separating the stability and instability regions were not considered in [lo]. In Fig. 2 the first four such 
curves are denoted by yk(k = 1, 2, 3, 4). The boundaries y2 and y4 are the vertical straight lines 
a = m/2 and a = T respectively, while the boundaries y1 and y2 are specified by the equations 
ab = tga andab = -ctga. 

Using the results of previous sections we investigated the stability of the periodic motion of a disc 
on the above-mentioned boundary curves. We were able to obtain the normalizing replacement (1.6) 
and the normal form (1.15) due to the fact that the fundamental matrix of the linearized equations of 
the perturbed motion can be written in explicit form [lo]. Calculations showed that the quantityA, which 
occurs in Eq. (1.4), is equal to 1 on the boundaries y1 and y4 and -1 on the boundaries y2 and y3. The 
quantity 6 in expression (1.15) is equal to 1 on the boundaries y1 and y3 and -1 on the boundaries 
y2 and ~4. The coefficients h30 and h10 are identically equal to zero. An investigation of the sign of the 
coefficient h4,, showed that it is positive along the whole curve yl; on y2 we have h40 e 0 when 

Fig. 2 
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0 < b c 4/7r and h40 > 0 when b > 41~; on y3 when ~12, c a < 2.543 . . . the coefficient h40 is negative, 
and when 2.543 . . . < a < IT it is positive; on y4 we have hm <OwhenO<b<2/nandh4,,>Owhen 
b > 2/1r. On the basis of Theorems 1 and 2 we can therefore conclude that there is orbital stability and 
instability on the curves y&k = 1, 2, 3,4). In Fig. 2 the stability and instability parts on these curves 
are represented by the continuous and dashed curves respectively. 

5. THE CASE OF PARAMETRIC RESONANCE IN A SYSTEM 
CONTAINING A SMALL PARAMETER 

Suppose Hamiltonian (1.2) depends on the parameter E (0 < E Q l), analytic with respect to it and, 
when E = 0 is independent of the variable ti. We will write the functions qn,,, en,,, x from (1.3) in the 
form of series 

= k!. EkV’mk)(5*4*.5,h x = k5+ EkX(kQt,) (5-l) 
(k) cp, = c cpt”:(c, >alP. WY’ = c wt~<s,)s;T)~ 

v+)l=m v+p=m 

Here c&i, @) &) Jl,,*, x are constant quantities if k = 0, and 2?r-periodic functions if k 3 1. 
We will assume that when E = 0 the periodic motion (1.1) is orbitally stable in the linear approximation, 

and the Hamiltonian (pf) of system (1.5) has the form of the Hamiltonian of a harmonic oscillator of 
frequency w 

cp$“’ = x exsa + q:: ) (5.2) 

In this section, we will consider the case of parametric resonance, when the quantity 2w is close to 
an integer n, and we will pay particular attention to the case of odd n. 

5.1. Normalization of Hamiltoniun function (1.2) when E = 0. It is more convenient to carry out the 
investigation assuming that the Hamilton function (1.2) when E 
inclusive with respect to 1 ql 1 ln, 

= 0 is normalized to fourth-power terms 
52: V-Q. Using the Depri-Hori method we can obtain the normalizing 

replacement of variables {i, qi + ei, qi as a canonical univalent transformation. In the variables 61, q: 
the Hamiltonian (1.2) when E = 0 does not contain third-power terms in 1 q; I”, 53, q;, while the set 
of fourth-power terms depends on qi and on the combination cz2, + qi2. Without dwelling on the details, 
we will merely note that in the normalization the variable ql remains unchanged (qt = qi) while the 
variables e1 and E2, q2 differ from E; and [I, ql, by terms the power of which is no less than the second 
and third respectively. 

In the variables & q: Hamiltonian (1.2) can be written in the form of the following series 

r*=r;+r;+r,l+...+r;+... (5.3) 

where I’: is a form of power m in I q; I lR, &, qi, where 

(5.4) 

(5.5) 

(5.6) 

The coefficients of the forms IJkJ in (5.4)-(5.6) are 
I;@) the equalities I’;(k) = 

27r-periodic in 5;. Then, for the second-order forms 
cp$%&, qi, 5;) hold, where 

of series (5.1). The expressions for the forms Is l ck), $ 3 
k)(k = 1,2,. ..) are coefficients of 8 in the first 
are much longer and will not be written here, 

since they will not be needed later. The constant coefficients cg from (5.6) are expressed in terms of 
the coefficients of expansions (1.2) by the formulae 
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5.2. Further transformation of the Hamiltonian. Suppose the quantity 20 is close to an odd integer 
number 2n + 1. We will put 

2n+ 1-263=2&a (5.8) 

where OL is a quantity of the order of unity. 

Remark. The results of this section can also be used in the case when 2w is close to an even number. This will 
be the case, for example, if there are no third-order terms I’, or they can be eliminated using a normalizing 
transformation. 

*We will consider an auxiliary linear Hamiiton system of differential equations with Hamilton function 
cp2 from (5;4)*and independent variable Er. Using a linear real canon@ univalent replacement of 
variables E2, q2 + E2, fi2, analytic in E, close to identical, 2Ir-periodic in 51, this system can be converted 
to a system whose Hamilton function +2 (e2, q2, E;) has the following form 

$2 = % h& + ij:) + I/z[x, sin(2n + l>e; - x2 cos(2n + l>s;](ef - fit) f 

+1x, cos(2n + 1)s; + x2 sin(2n + 1){;]E2ij2 

The quantities A, x1, x2 can be represented in the form of converging series 

h=j$(2n+l)-&(a-h(‘))+a2ti2)+..., xi =EX!‘)+E~X~~)+..., i= 1,~ 1 

where A@), XI”) are constants. In particular [5], we have 

(5.9) 

(5.10) 

(I) 
XI = $7 Ml:’ cos(2n + I>& - (cp$i -cp$)sin(2n + I& ]ds, 

x:” = &; BP! sin(2n + 1)5, + (cp$ - cp~;)cos(2n + 1x, ]& I 

(5.11) 

(5.12) 

where cp($ are the coeffici$nts o,f $$(er) of quadratic form c&) from (5.,1).* 
If the replacement t2, q2 + E2, q2, yhi$h reduces the Hamiltonian cpz&, qi, 6;) to the form (5.9), 

is supplemented by the replacement Ei, qr + 51, +r, given by the formulae 

where the arguments & q; of the function cp; are expressed in terms of 52, ti2 in accordance with the 
replacement [;, q; -+ g2, $, we obtain a close to identical canonical univalent transformation 
,Cf, q; + ii, iji of all four phase variables. This transformation reduces Hamilton function (5.3) to the 
following form 

~=ii,+~*(~2.i2.~,>+~~+~~+...+I;m+... (5.13) 

where C2 is the function (5.9), and f;, is a form of power m in ]{,I 1/2, t2, +jx with coefficients that are 
2P-periodic in &, and f‘ 
instead of the forms I$) 

fb have a structure specified by Eqs (5.5) and 
, I’, *@I I 

5.6). Only in these equations 
there will be certain other forms @), r$’ . 
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5.3. The stability of periodic motion (1.1) at the boundary of the parametric resonance region. We will 
introduce the following notation 

x=(X:+&k j3=&(cG-h(‘))-&2P)-..., a, =c,,-c,,(n+j$)+Q&+~)* (5.14) 

Theorem 3. In the region ]pI < x periodic motion (1.1) is orbitally stable. At the boundary 
IPI = x of this region, for sufficiently small E, the periodic motion is orbitally stable if @zo;? < 0, and 
unstable if 13uM > 0. 

For the proof we first note that since w is a semi-integer or close to semi-integer number, the quantities 
o and 30 are not close to integers. Hence the canonical, close to identical (identical when E = 0) 2~ 
periodic with respect to 51 replacement of variables &, $ + & q;, obtained, for example, using the Depri- 
Hori method, in Hamiltonian function (5.13) may completely annul the third-order terms f’s. The 
converted Hamiltonian I” will have the form 

I+ = T$ + N (2n + I - 2p)(&* + q;*> + g xcos20(q~* -s;‘) + xsin 20&q; + 

(5.15) 

The angle 8. is defined by the equations x1 = x sin 9*, x2 = x cos 9*, and lYzkl are forms of the 
fourth power in ]qili’2, &, qiwith coefficients that are 2a-periodic in 5;. 

We then make the canonical univalent replacement of variables &, q; + G, q; specified by the equations 

5; =c;: rj; =q;-j/,(2n+1)(5;2+lJ;2) (5.16) 

5; =cos04z+sin8$, r& =-sin8~;)+cose$ 

In the e;, q; variables the quadratic part of the new Hamiltonian does not contain the variable Ei, 
while the Hamiltonian itself will be , 

r” = q;‘+ x [(x - p>q;* -(x+P~~21+a20rl;2 +X~+,(52”~ +rl;2)G+ 

(5.17) 

u20 = czo, alI = cl, - (2n + I)c, 

The quantity am is defined in (5.14), I;;‘“’ are forms of the fourth power in I q;l’*, & qiwith coefficients 
that are 4Ir-periodic in 51, and 0s are higher-power terms. 

The Hamiltonian specified by the first three terms in expansion (5.17) corresponds to the linearized 
equations of the perturbed motion. When the inequality I p I < x is satisfied the characteristic equation 
has a positive root. Hence, by Lyapunov’s theorem on stability in the first approximation [6], the periodic 
motion (1.1) is orbitally unstable in the region I f3 I c x. 

We will now consider the limits of the instability region when p = x > 0 or p = --x < 0. We will 
make the canonical univalent transformation EJ, qi + Us, Vi, specified by the equations 

t;‘= Ulr tl;=u,. 5’; = (2x)-K u2, q~=-(23c)Y2u2r if p=x (5.18) 

4;= ui, 7\;= u,, ~;=(27~)~u~, r$=(2~)-~V~, if B=-x 

This replacement reduces Hainiltonian (5.17) to the form (1.13). Here F3 = 0 while F2 and F4 are 
obtained from the terms of the second and fourth powers in (5.17) by replacing the quantities e;, qi 
using formulae (5.18). Then, by using formulae (1.16) and (1.17) one can calculate the coefficients of 
the normalized Hamiltonian (1.15). We obtain 

6 = -signp, It,, = h,, = 0, ha = x2a02 + 0(E3) (5.19) 
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Since the quantity x is of the order of E, the sign of the coefficient h4a for sufficiently small E is identical 
with the sign of am. For small E the quantities ShN and MO;? have opposite signs. Hence, by Theorems 
1 and 2 we obtain that at the boundary of the parametric resonance region the unperturbed motion 
(1.1) is orbitally stable if &zo;! c 0, and unstable if @zo;! > 0. 

Theorem 3 is proved. 

6. THE STABILITY OF PENDULUM-TYPE ROTATIONS OF A RIGID 
BODY ABOUT A FIXED POINT 

Consider the motion of a rigid body of weight mg about a fixed point 0. Suppose Oxyz is a system of 
coordinates rigidly connected to the body, the axes of which are directed along the principal axes of 
inertia of the body for the pint 0, and A, B and C are the corresponding moments of inertia. We will 
assume that the centre of gravity G lies in the @Z plane at a distance 1 from the point 0, and the angle 
between the section OG and the Oz axis is equal to u. 

We will assume that the constant projection of the kinetic moment of the body onto the vertical is 
equal to zero. The equations of motion then allow of a partial solution, corresponding to the rotations 
of the body, for which the Oyr plane is in a fixed vertical plane, while the body rotates about the horizontal 
axis Ox like a physical pendulum. Suppose the mean angular velocity fi of this rotation is sufficiently 
large so that the dimensionless quantity E = mgZ/(An*) can be taken as a small parameter. 

The problem of the orbital stability of the above-mentioned plane rotations for small E was investigated 
in [ 111. In Fig. 3, in the plane of the parameters b = B/A and c = C/A in the physically permitted region 
1 f b L c, b f c 2 1, c + 1 2 b), we distinguish region 1, where the moment of inertia A with respect 
to the axis of rotation Ox has the mean value, and regions 2 and 3, where A is the greatest and least of 
the moments of inertia respectively. In region 1, for sufficiently small e, plane rotation is unstable, while 
in regions 2 and 3, for small E, there is orbital stability, apart from parametric resonance regions where 
the rotation of the body is unstable. In three-dimensional space of the parameters a, b, and 8 the regions 
of instability are confined to surfaces which, when E = 0, issue from the curve in the b, c plane specified 
by the equation 

3bc-4(b+c)+4=0 (6.1) 

Parts of the branches of this curve, passing through regions 2 and 3, are shown in Fig. 3. 
On the basis of the results of Section 5 of this paper and results from [ll], we will consider the stability 

of the plane rotations of the body on the above-mentioned surfaces, which bound the parametric 
resonance regions for small a. 

The quantity o from (5.2) is calculated from the formula 

0 = [E’c-‘(1 - 6)(1 - c)JK 

b 

Fig. 3 
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On resonance curve (6.1) o = l/2 and, consequently, we have n = 0 in Eq. (5.8). In the region of curve 
(6.1) the quantity cx from (5.8) is positive in region 2 (Fig. 3) to the right of and above curve (6.1) and 
in region 3 to the left and below it. On the other hand, the quantity OL is negative in region 2 to the left 
of and below this curve and in region 3 to the right of and above. 

The coefficients cV (see (5.6) and (5.7)) are obtained as follows: 

$0 =s/2, c,, =so, co2 =-s[b_‘(I-b)+c_‘(l-c)]/4 

where s = linre 
a 

ion2ands=-linregion3 
The quantity A ) from (5.11) turned out to be zero, while for the quantities (5.12) we can obtain 

the following expressions 

XI’) =-(46)-‘[2b-sr(2-b)Jsino, xy’ =s(4rc)-‘@c-2)cosG (6.2) 

r = [c-‘(I -@-‘&I -c)]& 

In the Hamiltonian of the perturbed motion, reduced to the form (5.17), we have 

x=aJw +o(E2), P=&O(+O(E2), a, = -s{l+2[b-‘(l-b)+c-‘(l-c)]}/8 (6.3) 

It is easy to show that, near the resonance curve (6.1), the quantity ~02 is negative both in region 2 
and in region 3. 

In the first approximation in E, the parametric resonance region is given by the inequality 

lo-l/2,EJpGp (6.4) 

Bearing in mind the results of the analysis of the signs of the quantities 01 and aoz presented 
above, we obtain, on the basis of Theorem 3, that for small E in the space b, c, E on surfaces which 
bound the parametric resonance regions, the plane rotation of the body investigated is orbitally stable 
for values of b and c lying in region 2 to the right and above curve (6.1), and in region 3 to the left and 
below it, and unstable in region 2 to the left and below this curve and in region 3 to the right and above 
it. 

The Kovalevskaya case. As an example we will consider the special case of a body, the geometry of 
the mass of which is close to the geometry of the mass of the body in the Kovalevskaya case, when B 
= C = 24. In the Kovalevskaya case b = c = 2, and it is noteworthy that in this case exact resonance 
o = l/2 occurs. This resonance denotes that the angular velocity of plane rotation of the body is exactly 
twice the frequency of small spatial oscillations of the body in the neighbourhood of this rotation. 

The point b = c = 2 belongs to the part of curve (6.1) lying in region 3 (Fig. 3). Taking relations (6.2) 
and (6.3) into account we obtain that at this point 

s=-1, t-=1, x=&/2+0(&2), a,=-j$ (6.5) 

Suppose b = 2 + Ab, c = 2 +Ac, where Ab and AC are small quantities. Then, up to first powers of 
Ab and AC we have 

o=j$+g&lb+Ac) 

Hence, we obtain from (6.3)-(6.5) that in the first approximation in E the parametric resonance region 
is specified by the inequality 

1&+&[<4E (6-Q 

On the boundary of region (6.6) the rotation of the body is orbitally stable for sufficiently small E if 
the corresponding Ab and AC are such that Ab + AC < 0, and unstable if Ab + AC > 0. 

For example, if Ab = 0 and Ac = 0, then, in the first approximation in E, the parametric resonance 
regions are specified respectively by the inequalities 
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At the boundaries c = 2 - 4~ and b = 2 - 4e of these regions the rotation of the rigid body is orbitally 
stable, and on the boundaries c = 2 + 4~ and b = 2 + 4~ it is unstable. 

This research was supported financially by the Russian Foundation for Basic Research (99-01-00405). 
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